Adhesion properties of uric acid crystal surfaces.

نویسندگان

  • Janeth B Presores
  • Jennifer A Swift
چکیده

Two key steps in kidney stone formation--crystal aggregation and attachment to renal tissues--depend on the surface adhesion properties of the crystalline components. Anhydrous uric acid (UA) is the most common organic crystalline phase found in human kidney stones. Using chemical force microscopy, the adhesion force between various functional groups and the largest (100) surface of UA single crystals was measured in both aqueous solution and model urine. Adhesion trends in the two solutions were identical, but were consistently lower in the latter. Changes in the solution ionic strength and pH were also found to affect the magnitude of the adhesion. UA surfaces showed the strongest adhesion to cationic functionalities, which is consistent with ionization of some surface uric acid molecules to urate. Although hydrogen-bonding and van der Waals interactions are usually considered to be dominant forces in the association between neutral organic compounds, this work demonstrates that electrostatic interactions can be important, particularly when dealing with weak acids under certain solution conditions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Adhesion of uric acid crystals to the surface of renal epithelial cells.

Adhesion of microcrystals that nucleate in tubular fluid to the apical surface of renal tubular cells could be a critical step in the formation of kidney stones, 12% of which contain uric acid (UA) either alone or admixed with calcium oxalates or calcium phosphates. UA crystals bind rapidly to monolayer cultures of monkey kidney epithelial cells (BSC-1 line), used to model the surface of the ne...

متن کامل

Adult Stem Cells Properties in Terms of Commitment, Aging and Biological Safety of Grit-Blasted and Acid-Etched Ti Dental Implants Surfaces

Titanium (Ti) is one of the most widely used biomaterials for manufacturing dental implants. The implant surface properties strongly influence osseointegration. The aim of the present study was to in vitro investigate the characteristics of Ti dental implants in terms of mutagenicity, hemocompatibility, biocompatibility, osteoinductivity and biological safety. The Ames test was used to test the...

متن کامل

The Effect of Polishing and Glazing Procedure on Streptococcus Mutans Adhesion of Three CAD/CAM Ceramics (in vitro)

Abstract Background and Aim: Polish and glaze are 2 methods to decrease roughness and bacterial adhesion to the ceramic surfaces. This in vitro study assessed the effect of polish and glaze on the bacterial adhesion of 3 ceramics. Materials and Methods: In this in vitro trial, samples of zirconia-reinforced lithium silicate, lithium disilicate and monolithic zirconia ceramic specimens were mill...

متن کامل

بررسی سطح اسید اوریک سرم در بیماران مبتلا به پسوریازیس

Background: Psoriasis is a common, chronic disease of the skin, in which both genetic and environmental factors play a critical role. The most characteristic lesions consist of red, scaly plaques present particularly over extensor surfaces and scalp. Studies have reported association between psoriasis and many other diseases in both cutaneous and systemic forms of the disease. Several studies w...

متن کامل

Simultaneous Determination of Ascorbic Acid, Uric Acid and Tryptophan by Novel Carbon Nanotube Paste Electrode

In the present paper, electrochemical methods were used to investigate the behavior of ascorbic acid at a carbon paste electrode modified with 2,2'-((1E)-(1,2 phenylenebis(azanylylidene)) bis(methanylylidene))bis(benzene-1,4-diol) (PBD) and oxidized multiwall carbon nanotubes. The modified carbon paste electrode showed high electrocatalytic activity toward ascorbic acid; the current was enhance...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Langmuir : the ACS journal of surfaces and colloids

دوره 28 19  شماره 

صفحات  -

تاریخ انتشار 2012